# VAISALA

# PTB330 Digital Barometer for Professional Meteorology, Aviation, and Industrial Users



Vaisala BAROCAP\* Digital Barometer PTB330 with a new trend display.

Vaisala BAROCAP<sup>®</sup> Digital Barometer PTB330 is a new generation barometer, designed for a wide range of high-end atmospheric pressure measurement.

The pressure measurement of the PTB330 is based on the Vaisala in-house, silicon capacitive, absolute pressure sensor - the Vaisala BAROCAP\* Sensor. It provides high measurement accuracy and excellent long-term stability.

# **High accuracy**

The PTB330 series features extremely high accuracy. Class A barometers for the most demanding applications are fine-adjusted and calibrated against a High Precision Pressure Calibrator. Class B barometers are adjusted and calibrated using electronic working standard. All the PTB330 barometers come with a NIST traceable, factory calibration certificate.

# Reliability through redundancy

According to customers' choice, the PTB330 can incorporate one, two or

three BAROCAP<sup>\*</sup> sensors. When two or three sensors are used, the barometer continuously compares the readings of the pressure sensors against one another and provides information on whether these are within the set internal difference criteria. This unique feature provides redundancy in pressure measurement.

Thus, users also get a stable and reliable pressure reading at all times as well as a pre-indication of when to service or recalibrate the barometer.

In addition to instant pressure, the PTB330 also provides the WMO pressure trend and tendency code.

# **QNH and QFE**

The PTB330 can be set to compensate for QNH and QFE pressure used especially in aviation. The QNH represents the pressure reduced to sea level, based on the altitude and temperature of the observation site. The QFE represents the height corrected pressure of small differences in altitude, for example, the air pressure

### **Features/Benefits**

- Vaisala BAROCAP<sup>\*</sup> sensor
- Accurate measurement
- Excellent long-term stability
- Added reliability through redundancy
- Graphical trend display with 1-year history data
- Height and altitude corrected pressure (QFE, QNH)
- For professional meteorology and aviation, laboratories, demanding industrial applications

at the airfield elevation.

### Data transfer

The data can be transferred to a PC by using MI70 Link Interface Software. You can examine the recorded data easily in a Microsoft<sup>®</sup> Windows environment and transfer it further to a spreadsheet program, such as Microsoft<sup>®</sup> Excel, in numeric or graphical format.

# **Graphical display**

The PTB330 features a multi-lingual, graphical display allowing users to monitor measurement trends. The graph is updated automatically while measuring and it provides a one-year measurement history.

# Applications

The PTB330 can be used successfully for aviation, professional meteorology, and for demanding industrial pressure measurement applications such as accurate laser interferometric measurement and exhaust gas analysis in engine test benches.

# **Technical Data**

### Performance

| Barometric pressure range 500 1100 hPa |            |               |  |
|----------------------------------------|------------|---------------|--|
|                                        | Class A    | Class B       |  |
| Linearity*                             | ±0.05 hPa  | ±0.10 hPa     |  |
| Hysteresis*                            | ±0.03 hPa  | ±0.03 hPa     |  |
| Repeatability*                         | ±0.03 hPa  | ±0.03 hPa     |  |
| Calibration uncertainty**              | ±0.07 hPa  | ±0.15 hPa     |  |
| Accuracy at +20 °C (+68 °F) ***        | ±0.10 hPa  | ±0.20 hPa     |  |
| Barometric pressure range 50           | . 1100 hPa |               |  |
|                                        |            | Class B       |  |
| Linearity*                             |            | ±0.20 hPa     |  |
| Hysteresis*                            |            | ±0.08 hPa     |  |
| Repeatability*                         |            | ±0.08 hPa     |  |
| Calibration uncertainty**              |            | ±0.15 hPa     |  |
| Accuracy at +20 °C ***                 |            | ±0.20 hPa     |  |
| Temperature dependence****             |            |               |  |
| 500 1100 hPa                           |            | ±0.1 hPa      |  |
| 50 1100 hPa                            |            | ±0.1 hPa      |  |
| Total accuracy -40 +60 °C (-40         | )+140 °F)  | 20.0 11 u     |  |
|                                        | Class A    | Class B       |  |
| 500 1100 hPa                           | ±0.15 hPa  |               |  |
| 50 1100 hPa                            |            | ±0.45 hPa     |  |
| Long-term stability                    |            |               |  |
| 500 1100 hPa                           |            | ±0.1 hPa/year |  |
| 50 1100 hPa                            |            | ±0.2 hPa/year |  |

\* Defined as ±2 standard deviation limits of endpoint nonlinearity, hysteresis or repeatability error.

\*\* Defined as ±2 standard deviation limits of inaccuracy of the working standard including traceability to NIST. \*\*\* Defined as the root sum of the squares (RSS) of endpoint

non-linearity, hysteresis error, repeatability error and calibration uncertainty at room temperature. \*\*\*\* Defined as ±2 standard deviation limits of temperature

dependence over the operating temperature range.

#### **Operating environment**

| Pressure range     | 500 1100 hPa, 50 1100 hPa |
|--------------------|---------------------------|
| Temperature range  |                           |
| operating          | -40 +60 °C (-40 +140 °F)  |
| with local display | 0 +60 °C (+32 +140 °F)    |

### Inputs and outputs

| Supply voltage                      | 10                       | 35 VDC        |
|-------------------------------------|--------------------------|---------------|
| Supply voltage sensitivity          |                          | negligible    |
| Typical power consumption at +20 °C |                          | 00            |
| (Ů 1 24 VDC, one pressure sensor)   |                          |               |
| RS-232                              |                          | 25 mA         |
| RS-485                              |                          | 40 mA         |
| U out                               |                          | 25 mA         |
|                                     |                          | 40 mA         |
| display and backlight               |                          | +20 mA        |
| Serial I/O                          | RS232C, RS485/422        |               |
| Pressure units                      | hPa, mbar, kPa, Pa inHg, |               |
|                                     | mmH <sub>2</sub> 0, mmHg | g, torr, psia |
|                                     | Class A                  | Class B       |
| Resolution                          | 0.01 hPa                 | 0.1 hPa       |
| Settling time at power-up           |                          |               |
| (one sensor)                        | 4 s                      | 3 s           |
| Response time (one sensor)          | 2 s                      | 1 s           |
| Acceleration sensitivity            |                          | negligible    |
| Pressure connector                  | M5 (10-32) inter         | nal thread    |

| Pressure fitting       | barbed fitting for 1/8" I.D. tubing |
|------------------------|-------------------------------------|
|                        | or quick connector with shutoff     |
|                        | valve for 1/8" hose                 |
| Maximum pressure limit | 5000 hPa abs.                       |
| Compliance             | EMC standard EN61326-1:1997+        |
| •                      | Am1:1998 + Am2:2001: Industrial     |
|                        | Environment                         |

#### Mechanics

| Housing material       | G AlSi10 Mg (DIN 1725) |
|------------------------|------------------------|
| Housing classification | IP65                   |
| Weight                 | 1 - 1.5 kg             |

#### Analog output (optional)

| Current output       | 0 20         | mA, 4 20 mA          |  |
|----------------------|--------------|----------------------|--|
| Voltage output       | 0 1 V, (     | 0 1 V, 0 5 V, 0 10 V |  |
| Accuracy at pressure | 500 1100 hPa | 50 1100 hPa          |  |
| range                |              |                      |  |
| at +20 °C            | ±0.30 hPa    | ±0.40 hPa            |  |
| at -40 +60 °C        | ±0.60 hPa    | ±0.75 hPa            |  |

### Accessories

| Serial interface cable                | 19446ZZ |
|---------------------------------------|---------|
| USB-RJ45 serial connection cable      | 219685  |
| Software interface kit                | 215005  |
| Wall mounting kit                     | 214829  |
| Outdoor installation kit (weather     | 215109  |
| shield)                               |         |
| Installation kit for pole or pipeline | 215108  |
| Power supply module                   | POWER-1 |
| Temperature compensated analog        | AOUT-1T |
| output module                         |         |
| Isolated RS-485 module                | RS485-1 |
|                                       |         |

### **Dimensions**

in mm (inches)





BAROCAP\* is a registered trademark of Vaisala. Specifications are subject to change without prior notice. CE ©Vaisala Oyj